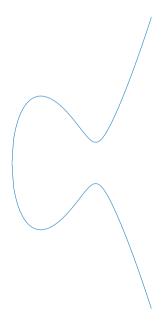
#### ISOGENY-BASED CRYPTOGRAPHY: A BRAND NEW DAY

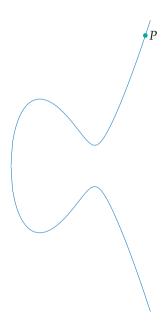
#### CENTRAL EUROPEAN CONFERENCE ON CRYPTOLOGY

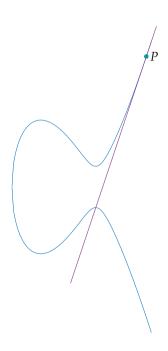
#### **Thomas Decru**

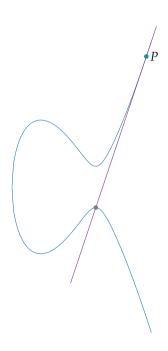
COSIC KU Leuven, Belgium

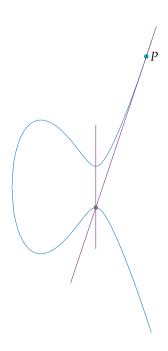
June 20th, 2025, Budapest

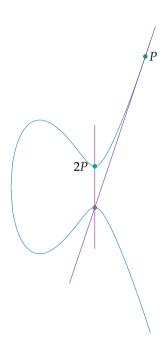


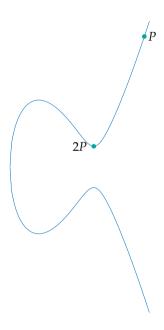


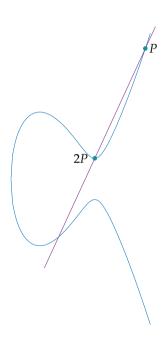


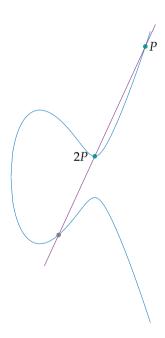


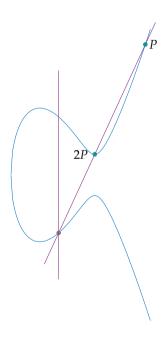


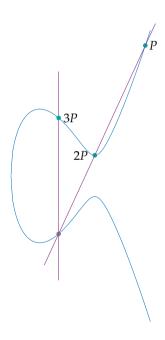


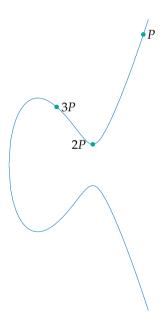


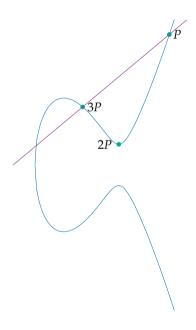


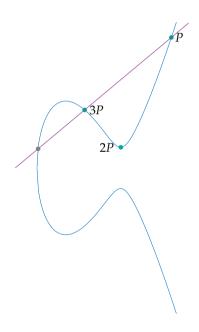


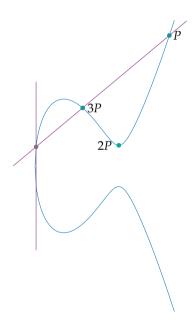


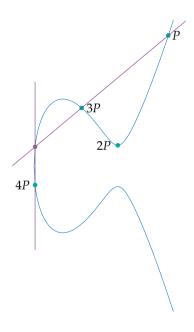


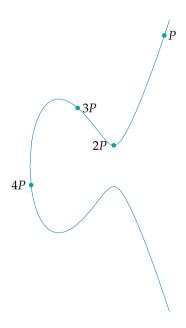


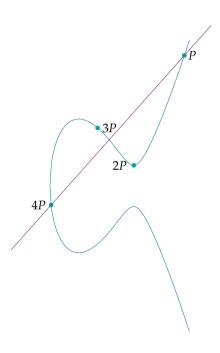


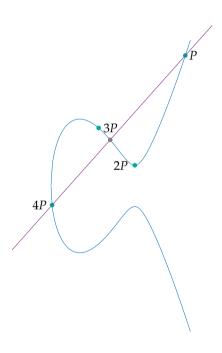


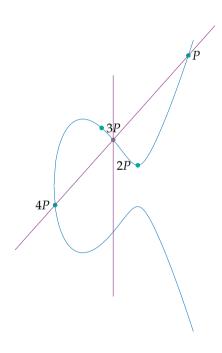


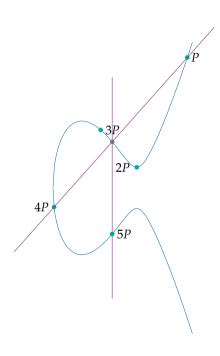


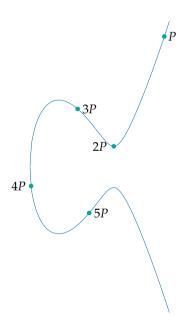


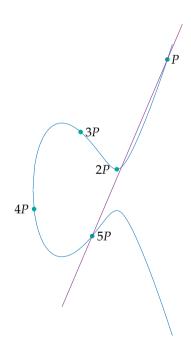


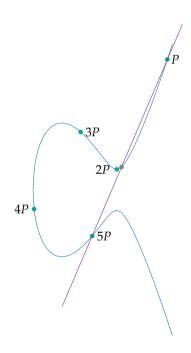


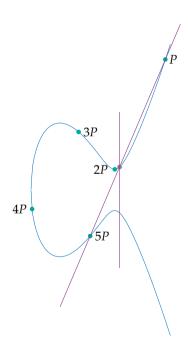


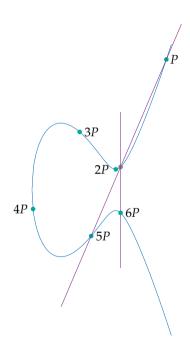


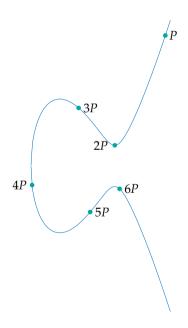


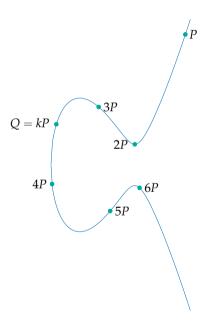














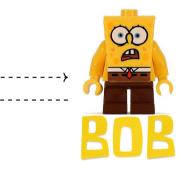
Public information: point  $P \in E$ 



Public information: point  $P \in E$ 

Private integer a





Private integer *b* 

Public information: point  $P \in E$ 

Private integer a

 $Q_{Alice} = aP$ 







Private integer *b* 

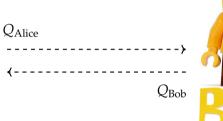
 $Q_{\text{Bob}} = bP$ 

Public information: point  $P \in E$ 

Private integer a

 $Q_{Alice} = aP$ 







Private integer *b* 

 $Q_{\text{Bob}} = bP$ 

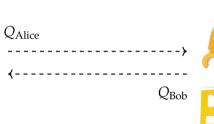
Public information: point  $P \in E$ 

Private integer a

$$Q_{Alice} = aP$$

$$Q_{\text{Alice+Bob}} = aQ_{\text{Bob}}$$







Private integer b

$$Q_{\text{Bob}} = bP$$

$$Q_{\text{Bob+Alice}} = bQ_{\text{Alice}}$$

#### Public information: point $P \in E$

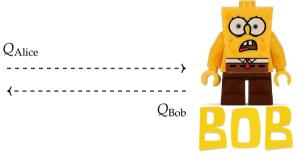
Private integer a

$$Q_{Alice} = aP$$

$$Q_{Alice+Bob} = aQ_{Bob}$$
$$= (ab)P$$







Private integer *b* 

$$Q_{\text{Bob}} = bP$$

$$Q_{\text{Bob+Alice}} = bQ_{\text{Alice}}$$
  
=  $(ba)P$ 

#### ELLIPTIC CURVE DIFFIE-HELLMAN

### Public information: point $P \in E$

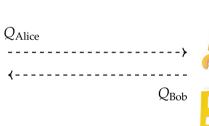
Private integer a

$$Q_{Alice} = aP$$

$$Q_{Alice+Bob} = aQ_{Bob}$$
$$= (ab)P$$









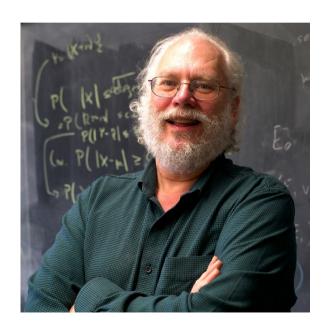


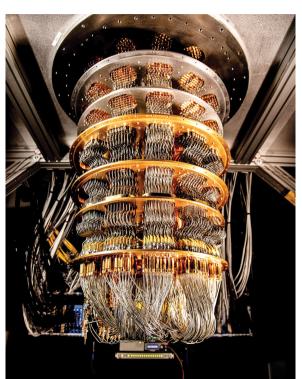
Private integer *b* 

$$Q_{\text{Bob}} = bP$$

$$Q_{\text{Bob+Alice}} = bQ_{\text{Alice}}$$
  
=  $(ba)P$ 

# SHOR'S QUANTUM ALGORITHM





#### NIST initiated a Post-Quantum Cryptography Standardization:

- ▶ December 20th, 2016: call to replace ECDH/RSA/... based on new hard problems:
  - finding short vectors in lattices
  - decoding for random linear codes
  - solving nonlinear systems of equations
  - finding isogenies between elliptic curves
  - ...

#### NIST initiated a Post-Quantum Cryptography Standardization:

- ▶ December 20th, 2016: call to replace ECDH/RSA/... based on new hard problems:
  - finding short vectors in lattices
  - decoding for random linear codes
  - solving nonlinear systems of equations
  - finding isogenies between elliptic curves
  - ...
- ▶ December 21st, 2017: 69 proposals accepted for round 1.
- ▶ January 30th, 2019: 26 remainders to round 2.
- ▶ July 22nd, 2020: 15 remainders to round 3.

- ▶ July 5th, 2022:
  - 3 winners for digital signatures: CRYSTALS-Dilithium, FALCON, SPHINCS+
  - 1 winner for public key exchange: CRYSTALS-Kyber
  - 4 alternatives for public key exchange to round 4: BIKE, Classical McEliece, HQC, SIKE

- ▶ July 5th, 2022:
  - 3 winners for digital signatures: CRYSTALS-Dilithium, FALCON, SPHINCS+
  - 1 winner for public key exchange: CRYSTALS-Kyber
  - 4 alternatives for public key exchange to round 4: BIKE, Classical McEliece, HQC, SIKE
- ▶ July 30th, 2022: SIKE<sup>†</sup>

- ▶ July 5th, 2022:
  - 3 winners for digital signatures: CRYSTALS-Dilithium, FALCON, SPHINCS+
  - 1 winner for public key exchange: CRYSTALS-Kyber
  - 4 alternatives for public key exchange to round 4: BIKE, Classical McEliece, HQC, SIKE
- ▶ July 30th, 2022: SIKE<sup>†</sup>
- ▶ March 11th, 2025: HQC was chosen for standardization

- ▶ July 5th, 2022:
  - 3 winners for digital signatures: CRYSTALS-Dilithium, FALCON, SPHINCS+
  - 1 winner for public key exchange: CRYSTALS-Kyber
  - 4 alternatives for public key exchange to round 4: BIKE, Classical McEliece, HQC, SIKE
- ▶ July 30th, 2022: SIKE<sup>†</sup>
- ▶ March 11th, 2025: HQC was chosen for standardization

New call for additional signature proposals in September 2022 to promote diversification!

▶ June 1st, 2023: 40 proposals accepted for round 1

- ▶ July 5th, 2022:
  - 3 winners for digital signatures: CRYSTALS-Dilithium, FALCON, SPHINCS+
  - 1 winner for public key exchange: CRYSTALS-Kyber
  - 4 alternatives for public key exchange to round 4: BIKE, Classical McEliece, HQC, SIKE
- ▶ July 30th, 2022: SIKE<sup>†</sup>
- ▶ March 11th, 2025: HQC was chosen for standardization

New call for additional signature proposals in September 2022 to promote diversification!

- ▶ June 1st, 2023: 40 proposals accepted for round 1
- ▶ October 24th, 2024: 14 remainders for round 2, including SQISign!

# **SQIS**IGN

SQISign still remains, the only isogeny-based submission!

- ► The good:
  - extremely compact (similar to current ECDSA)
  - fast verification
  - diversifies

## **SQISIGN**

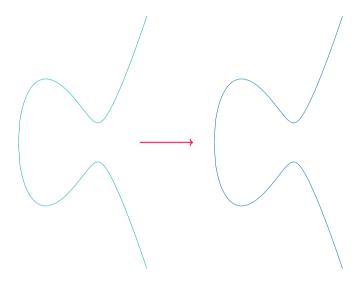
SQISign still remains, the only isogeny-based submission!

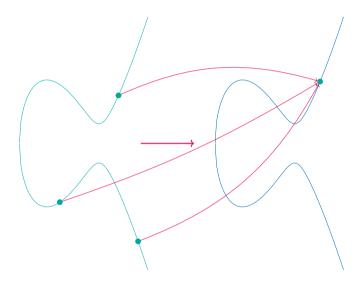
- ► The good:
  - extremely compact (similar to current ECDSA)
  - fast verification
  - diversifies
- ► The bad:
  - slow signing
  - doesn't scale well

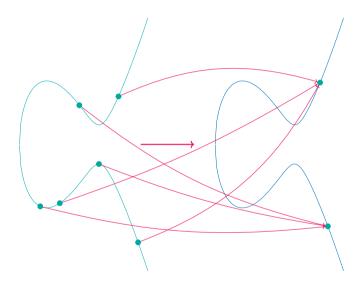
# **SQISIGN**

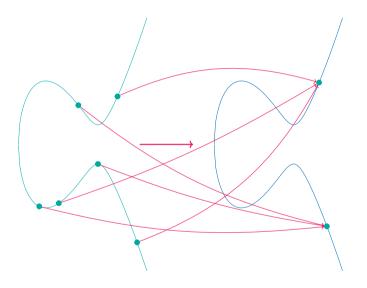
SQISign still remains, the only isogeny-based submission!

- ► The good:
  - extremely compact (similar to current ECDSA)
  - fast verification
  - diversifies
- ► The bad:
  - slow signing
  - doesn't scale well
- ► The ugly:
  - security assumption is complex and rather ad hoc

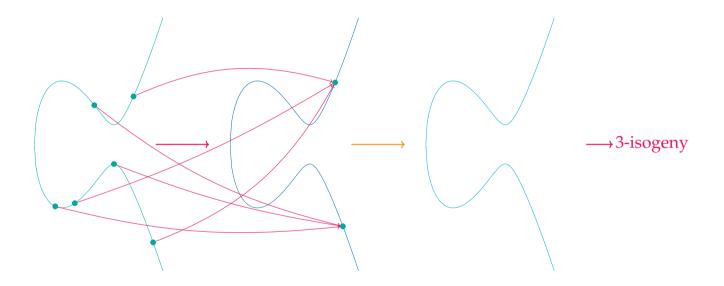


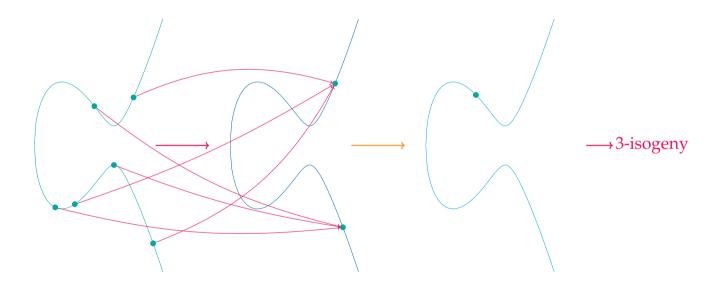


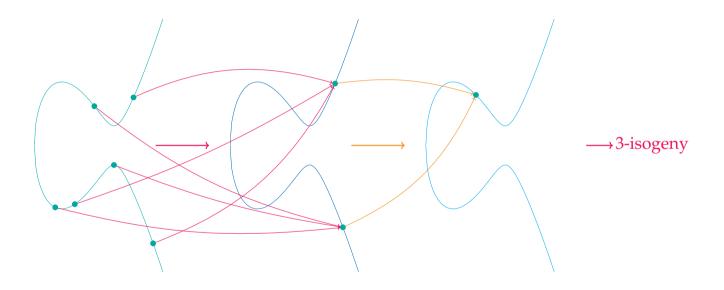


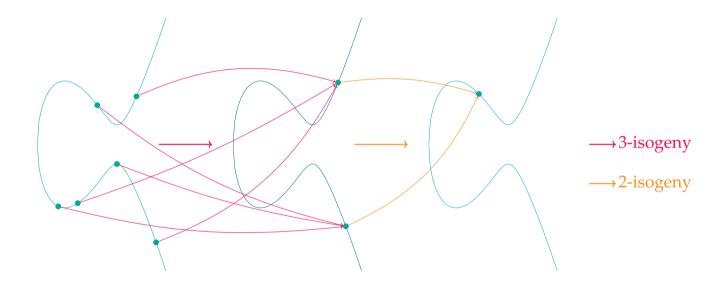


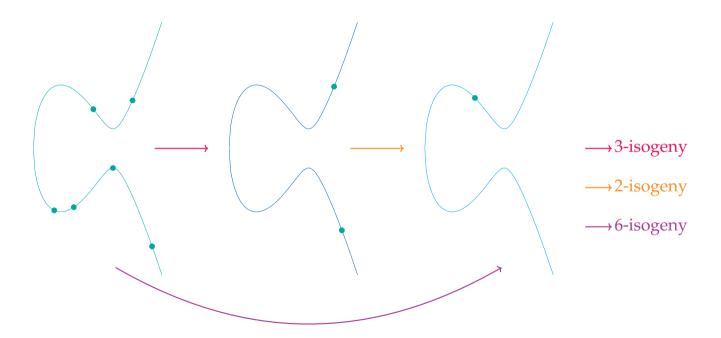
→ 3-isogeny

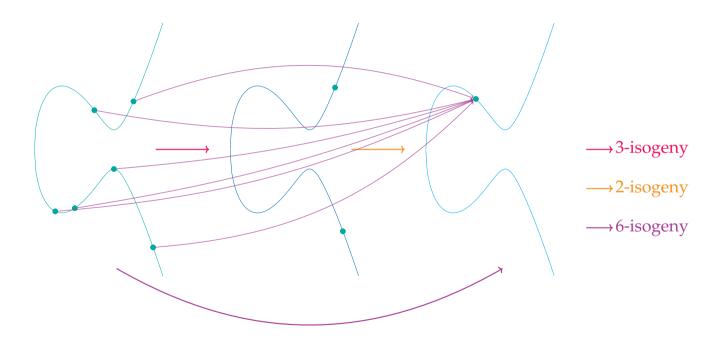


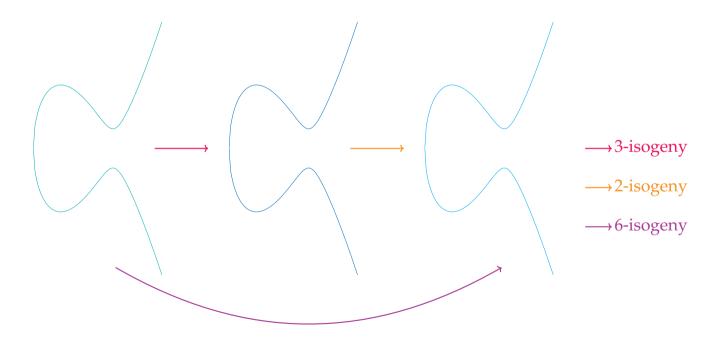


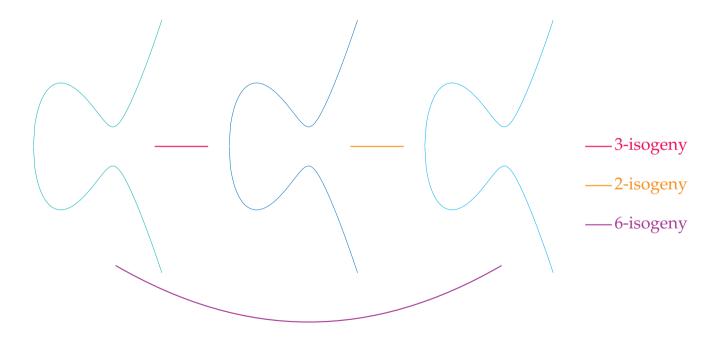












General:

Given  $E_1$  and  $E_2$ , find any isogeny  $\varphi : E_1 \to E_2$ .

## General:

Given  $E_1$  and  $E_2$ , find any isogeny  $\varphi : E_1 \to E_2$ .

Attacks over  $\mathbb{F}_q$ :

- ► classical  $\tilde{\mathcal{O}}(q^{1/4})$
- quantum  $\tilde{\mathcal{O}}(q^{1/8})$

### General:

Given  $E_1$  and  $E_2$ , find any isogeny  $\varphi : E_1 \to E_2$ .

Attacks over  $\mathbb{F}_q$ :

- ▶ classical  $\tilde{\mathcal{O}}(q^{1/4})$
- quantum  $\tilde{\mathcal{O}}(q^{1/8})$

### Often:

Given  $E_1$  and  $E_2$  supersingular, find an  $\ell^n$ -isogeny  $\varphi: E_1 \to E_2$ .

### General:

Given  $E_1$  and  $E_2$ , find any isogeny  $\varphi : E_1 \to E_2$ .

Attacks over  $\mathbb{F}_q$ :

- ► classical  $\tilde{\mathcal{O}}(q^{1/4})$
- quantum  $\tilde{\mathcal{O}}(q^{1/8})$

### Often:

Given  $E_1$  and  $E_2$  supersingular, find an  $\ell^n$ -isogeny  $\varphi: E_1 \to E_2$ .

Isogenies need to be both represented and evaluated!

- representation typically by ker  $\varphi$  (i.e. all points mapped to neutral element  $\infty$ )
- evaluation typically by Vélu-type formulae (i.e. complexity  $\mathcal{O}(\deg \varphi)$  or best case  $\tilde{\mathcal{O}}(\sqrt{\deg \varphi})$ )

#### RELATED HARD PROBLEMS

Endomorphism-ring-finding problem:

Given *E* supersingular, find *all* endomorphisms  $\varphi : E \to E$ .

#### RELATED HARD PROBLEMS

Endomorphism-ring-finding problem:

Given *E* supersingular, find *all* endomorphisms  $\varphi : E \to E$ .

One-endomorphism-finding problem:

Given E supersingular, find one (nontrivial) endomorphism  $\varphi: E \to E$ .

Assume  $p \equiv 3 \mod 4$  with

$$E_0/\mathbb{F}_{p^2}: y^2 = x^3 + x.$$

Assume  $p \equiv 3 \mod 4$  with

$$E_0/\mathbb{F}_{p^2}: y^2 = x^3 + x.$$

Multiplication-by-*k*-map:

$$[k]: E_0 \to E_0$$
$$P \mapsto kP$$

Assume  $p \equiv 3 \mod 4$  with

$$E_0/\mathbb{F}_{p^2}: y^2 = x^3 + x.$$

Multiplication-by-*k*-map:

$$[k]: E_0 \to E_0$$
$$P \mapsto kP$$

"Complex-multiplication-map":

$$\iota: E_0 \to E_0$$
$$(x, y) \mapsto (-x, \sqrt{-1}y)$$

Assume  $p \equiv 3 \mod 4$  with

$$E_0/\mathbb{F}_{p^2}: y^2 = x^3 + x.$$

Multiplication-by-*k*-map:

$$[k]: E_0 \to E_0$$
$$P \mapsto kP$$

"Complex-multiplication-map":

$$\iota: E_0 \to E_0$$
  
 $(x, y) \mapsto (-x, \sqrt{-1}y)$ 

Frobenius map:

$$\pi: E_0 \to E_0$$
$$(x, y) \mapsto (x^p, y^p)$$

### **DEURING CORRESPONDENCE**

We can concatenate endomorphisms:

$$\iota \circ \iota = [-1], \qquad \pi \circ \pi = [-p], \qquad \iota \circ \pi = [-1] \circ \pi \circ \iota$$

#### **DEURING CORRESPONDENCE**

We can concatenate endomorphisms:

$$\iota \circ \iota = [-1], \qquad \pi \circ \pi = [-p], \qquad \iota \circ \pi = [-1] \circ \pi \circ \iota$$

Under the Deuring correspondence, there is an isomorphism between the endomorphism ring of supersingular elliptic curves and maximal orders in the quaternion algebra  $B_{p,\infty}$ , i.e.  $\mathbb{Q}(1,i,j,k)$  with

$$i^2 = -1,$$
  $j^2 = -p,$   $k = ij = -ji.$ 

# **DEURING CORRESPONDENCE**

We can concatenate endomorphisms:

$$\iota \circ \iota = [-1], \qquad \pi \circ \pi = [-p], \qquad \iota \circ \pi = [-1] \circ \pi \circ \iota$$

Under the Deuring correspondence, there is an isomorphism between the endomorphism ring of supersingular elliptic curves and maximal orders in the quaternion algebra  $B_{p,\infty}$ , i.e.  $\mathbb{Q}(1,i,j,k)$  with

$$i^2 = -1,$$
  $j^2 = -p,$   $k = ij = -ji.$ 

For the endomorphism ring of  $E_0$ , one possible identification is given by

$$[1] \mapsto 1, \qquad \iota \mapsto i, \qquad \pi \mapsto j$$

and then

$$\operatorname{End}(E_0) \cong \mathcal{O}_0 = \left\langle 1, i, \frac{i+j}{2}, \frac{1+k}{2} \right\rangle.$$

# DEURING CORRESPONDENCE

## Under the Deuring correspondence:

- ▶ the endomorphism ring End( $E_0$ ) of a supersingular elliptic curve  $E_0$  is equivalent to a maximal order  $\mathcal{O}_0$  in the quaternion algebra  $B_{p,\infty}$
- ▶ an isogeny  $\varphi : E_0 \to E_1$  is equivalent to a (connecting kernel) ideal I, which is a left ideal of  $\mathcal{O}_0$  and a right ideal of  $\mathcal{O}_1$ , with

$$Norm(I) = \deg \varphi$$

# **DEURING CORRESPONDENCE**

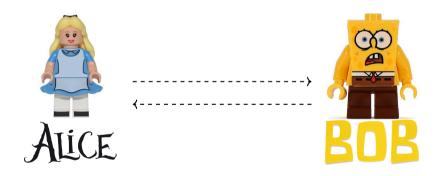
## Under the Deuring correspondence:

- ▶ the endomorphism ring End( $E_0$ ) of a supersingular elliptic curve  $E_0$  is equivalent to a maximal order  $\mathcal{O}_0$  in the quaternion algebra  $B_{p,\infty}$
- ▶ an isogeny  $\varphi : E_0 \to E_1$  is equivalent to a (connecting kernel) ideal I, which is a left ideal of  $\mathcal{O}_0$  and a right ideal of  $\mathcal{O}_1$ , with

$$Norm(I) = \deg \varphi$$

KLPT is an algorithmic tool which allows us to find equivalent ideals  $J \sim I$  of different norm!

▶ The output is a lot larger than optimal, i.e.  $\tilde{\mathcal{O}}(p^{3+\varepsilon})$ 

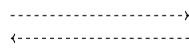


# 

Public information: curve *E* 

Private isogeny  $\varphi_a$ 







Private isogeny  $\varphi_b$ 

Public information: curve E

Private isogeny  $\varphi_a$ 

 $\varphi_a: E \to E_{Alice}$ 



λτ: c --



Private isogeny  $\varphi_b$ 

 $\varphi_h: E \to E_{\mathsf{Bob}}$ 

Public information: curve *E* 

Private isogeny  $\varphi_a$ 

 $\varphi_a: E \to E_{Alice}$ 







Private isogeny  $\varphi_b$ 

 $\varphi_h: E \to E_{\mathsf{Bob}}$ 

# Public information: curve E

Private isogeny  $\varphi_a$ 

$$\varphi_a: E \to E_{Alice}$$

$$\varphi_{\text{Alice+Bob}} = \dots$$
?







Private isogeny  $\varphi_b$ 

 $\varphi_b: E \to E_{\mathsf{Bob}}$ 

 $\varphi_{\text{Bob+Alice}} = \dots?$ 

# **CSIDH**

We can "make this commutative" by restricting to:

- ▶ supersingular elliptic curves defined over  $\mathbb{F}_p$  instead of  $\mathbb{F}_{p^2}$
- restricting to consider the endomorphism subring defined over  $\mathbb{F}_p$  instead of  $\mathbb{F}_{p^2}$ , which is isomorphic to an order  $\mathcal{O}$  in an imaginary quadratic field

## **CSIDH**

We can "make this commutative" by restricting to:

- ▶ supersingular elliptic curves defined over  $\mathbb{F}_p$  instead of  $\mathbb{F}_{p^2}$
- restricting to consider the endomorphism subring defined over  $\mathbb{F}_p$  instead of  $\mathbb{F}_{p^2}$ , which is isomorphic to an order  $\mathcal{O}$  in an imaginary quadratic field

#### Theorem 1

The class group  $cl(\mathcal{O})$  acts freely and transitively on the set of elliptic curves E with  $End_{\mathbb{F}_p}(E) \cong \mathcal{O}$ , where  $\pi \in \mathcal{O}$  corresponds to  $\mathbb{F}_p$ -Frobenius.

# **CSIDH**

We can "make this commutative" by restricting to:

- ▶ supersingular elliptic curves defined over  $\mathbb{F}_p$  instead of  $\mathbb{F}_{p^2}$
- restricting to consider the endomorphism subring defined over  $\mathbb{F}_p$  instead of  $\mathbb{F}_{p^2}$ , which is isomorphic to an order  $\mathcal{O}$  in an imaginary quadratic field

#### Theorem 1

The class group  $cl(\mathcal{O})$  acts freely and transitively on the set of elliptic curves E with  $End_{\mathbb{F}_p}(E) \cong \mathcal{O}$ , where  $\pi \in \mathcal{O}$  corresponds to  $\mathbb{F}_p$ -Frobenius.

#### This results in CSIDH:

- ▶ Alice samples  $[\mathfrak{a}] \in \operatorname{cl}(\mathcal{O})$  and act on E to get to  $[\mathfrak{a}]E$
- ▶ Bob samples  $[\mathfrak{b}] \in \operatorname{cl}(\mathcal{O})$  and act on E to get to  $[\mathfrak{b}]E$
- ▶ they both end up on  $[\mathfrak{ab}]E = [\mathfrak{ba}]E$

# **CSIDH SETTING**

# The good:

extremely flexible due to abstraction as group action!

## **CSIDH SETTING**

# The good:

extremely flexible due to abstraction as group action!

#### The bad:

- ▶ this is essentially the abelian hidden-shift problem so subexponential quantum attacks exist
  - (there's also some controversy about how high parameters should be for this)

## **CSIDH SETTING**

## The good:

extremely flexible due to abstraction as group action!

#### The bad:

- ▶ this is essentially the abelian hidden-shift problem so subexponential quantum attacks exist
  - (there's also some controversy about how high parameters should be for this)
- despite speedups and the fact that everything happens over  $\mathbb{F}_p$ , it's quite slow:
  - you can't randomly sample from  $cl(\mathcal{O})$ , so we resort to ideals of the form

$$(3, \pi \pm 1)^{e_1} (5, \pi \pm 1)^{e_2} \dots (587, \pi \pm 1)^{e_{74}}$$

with  $e_i \in [-5; 5]$ , corresponding to an isogeny of degree (at most)

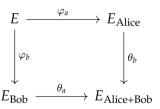
$$(3\cdot 5\cdot \ldots \cdot 587)^5$$

▶ Alice and Bob choose (public) bases  $\langle P_A, Q_A \rangle = E[2^a]$  and  $\langle P_B, Q_B \rangle = E[3^b]$ 

- ▶ Alice and Bob choose (public) bases  $\langle P_A, Q_A \rangle = E[2^a]$  and  $\langle P_B, Q_B \rangle = E[3^b]$
- Alice chooses  $\varphi_a$  such that  $\ker \varphi_a = \langle P_A + s_a Q_a \rangle$
- ▶ Bob chooses  $\varphi_b$  such that  $\ker \varphi_b = \langle P_B + s_b Q_b \rangle$

- ▶ Alice and Bob choose (public) bases  $\langle P_A, Q_A \rangle = E[2^a]$  and  $\langle P_B, Q_B \rangle = E[3^b]$
- Alice chooses  $\varphi_a$  such that  $\ker \varphi_a = \langle P_A + s_a Q_a \rangle$
- ▶ Bob chooses  $\varphi_b$  such that  $\ker \varphi_b = \langle P_B + s_b Q_b \rangle$
- ▶ Alice also shares  $\varphi_a(P_B)$ ,  $\varphi_a(Q_B)$  and Bob shares  $\varphi_b(P_A)$ ,  $\varphi_b(Q_A)$ !

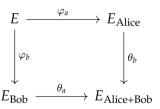
- ▶ Alice and Bob choose (public) bases  $\langle P_A, Q_A \rangle = E[2^a]$  and  $\langle P_B, Q_B \rangle = E[3^b]$
- Alice chooses  $\varphi_a$  such that  $\ker \varphi_a = \langle P_A + s_a Q_a \rangle$
- ▶ Bob chooses  $\varphi_b$  such that  $\ker \varphi_b = \langle P_B + s_b Q_b \rangle$
- ▶ Alice also shares  $\varphi_a(P_B)$ ,  $\varphi_a(Q_B)$  and Bob shares  $\varphi_b(P_A)$ ,  $\varphi_b(Q_A)$ !



#### with

- $\blacktriangleright \ker \theta_a = \langle \varphi_b(P_A) + s_a \varphi_b(Q_A) \rangle$

- ▶ Alice and Bob choose (public) bases  $\langle P_A, Q_A \rangle = E[2^a]$  and  $\langle P_B, Q_B \rangle = E[3^b]$
- Alice chooses  $\varphi_a$  such that  $\ker \varphi_a = \langle P_A + s_a Q_a \rangle$
- ▶ Bob chooses  $\varphi_b$  such that  $\ker \varphi_b = \langle P_B + s_b Q_b \rangle$
- ▶ Alice also shares  $\varphi_a(P_B)$ ,  $\varphi_a(Q_B)$  and Bob shares  $\varphi_b(P_A)$ ,  $\varphi_b(Q_A)$ !



#### with

- $\blacktriangleright \ker(\theta_a \circ \varphi_b) = \ker(\theta_b \circ \varphi_a) = \langle P_A + s_a Q_A, P_B + s_b Q_b \rangle$

# KANI'S LEMMA

## Lemma.[Ernst Kani, 1997]

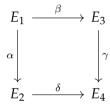
Let  $\mathbf{f} = (f, H_1, H_2)$  be an isogeny diamond configuration of order N from  $E_1$  to  $E_2$  and put n = N/d and  $k_i = n_i/d$ , where  $d = (n_1, n_2)$  and  $n_i = \#H_i$ . Then f factors (uniquely) over [d], i.e.  $f = \bar{f} \circ [d]$ , and there is a unique reducible anti-isometry  $\psi = \psi_{\mathbf{f}} : E_1[N] \to E_2[N]$  such that

$$\psi(k_1x_1 + k_2x_2) = \overline{f}(x_2 - x_1), \quad \forall x_i \in \widetilde{H}_i = [n]^{-1}(H_i),$$

and every reducible anti-isometry is of this form. Furthermore, if  $\mathbf{f}' = (f', H_1', H_2')$  is another isogeny diamond configuration, then we have  $\psi_{\mathbf{f}} = \psi_{\mathbf{f}'} \iff \mathbf{f} \sim \mathbf{f}'$ .

# KANI'S LEMMA

# Consider the commutative diagram



with  $\deg \alpha = \deg \gamma$  and  $\deg \beta = \deg \delta$ 

# KANI'S LEMMA

#### Consider the commutative diagram

$$E_{1} \xrightarrow{\beta} E_{3}$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\beta}$$

$$E_{2} \xrightarrow{\delta} E_{4}$$

with  $\deg \alpha = \deg \gamma$  and  $\deg \beta = \deg \delta$ , then

$$\Phi: E_2 \times E_3 \to E_1 \times E_4$$

$$(P, Q) \mapsto \begin{pmatrix} \hat{\alpha} & \hat{\beta} \\ -\delta & \gamma \end{pmatrix} \begin{pmatrix} P \\ Q \end{pmatrix}$$

is a  $(\deg \alpha + \deg \beta, \deg \alpha + \deg \beta)$ -isogeny between principally polarised abelian surfaces with

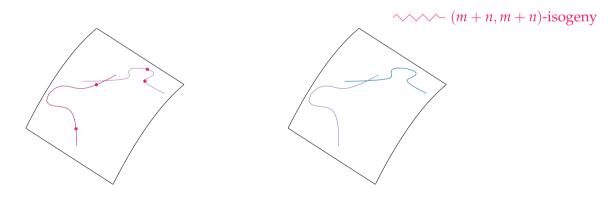
$$\ker \Phi = \{(\alpha(P), \beta(P)) \mid P \in E_1[\deg \alpha + \deg \beta]\}.$$

# KANI'S LEMMA APPLIED

Given the one-dimensional isogeny



this determines the two-dimensional isogeny



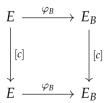
#### Assume that

- ightharpoonup Alice computes a  $2^a$ -isogeny
- ▶ Bob computes a  $3^b$ -isogeny  $\varphi_B : E \to E_B$  and shares  $\varphi_B(P_A), \varphi_B(Q_A)$  as well
- ▶  $2^a 3^b = c^2$  is a perfect square (for simplification purposes)

#### Assume that

- ► Alice computes a 2<sup>a</sup>-isogeny
- ▶ Bob computes a 3<sup>b</sup>-isogeny  $\varphi_B : E \to E_B$  and shares  $\varphi_B(P_A), \varphi_B(Q_A)$  as well
- $ightharpoonup 2^a 3^b = c^2$  is a perfect square (for simplification purposes)

## Consider the diagram



where  $3^b + c^2 = 2^a$ , giving rise to the  $(2^a, 2^a)$ -isogeny with (known!) kernel

$$\ker \Phi = \{ (cP, \varphi_B(P) \mid P \in E[2^a] \}$$

## To complete the attack:

- ightharpoonup compute the  $(2^a, 2^a)$ -isogeny
  - this can be done by decomposing as a chain of (2,2)-isogenies of length a
- extract  $\varphi_B$  from this since this isogeny is given by

$$(P,Q) \mapsto \begin{pmatrix} [c] & \hat{\varphi_b} \\ -\varphi_b & [c] \end{pmatrix}$$

# To complete the attack:

- ightharpoonup compute the  $(2^a, 2^a)$ -isogeny
  - this can be done by decomposing as a chain of (2,2)-isogenies of length a
- $\triangleright$  extract  $\varphi_B$  from this since this isogeny is given by

$$(P,Q) \mapsto \begin{pmatrix} [c] & \hat{\varphi_b} \\ -\varphi_b & [c] \end{pmatrix}$$

What if  $3^b - 2^a$  is not a square?

▶ in SIKE there are tricks because  $E_0$  was used so nontrivial endomorphisms can be used instead of [c]

# To complete the attack:

- ightharpoonup compute the  $(2^a, 2^a)$ -isogeny
  - this can be done by decomposing as a chain of (2,2)-isogenies of length a
- extract  $\varphi_B$  from this since this isogeny is given by

$$(P,Q) \mapsto \begin{pmatrix} [c] & \hat{\varphi_b} \\ -\varphi_b & [c] \end{pmatrix}$$

What if  $3^b - 2^a$  is not a square?

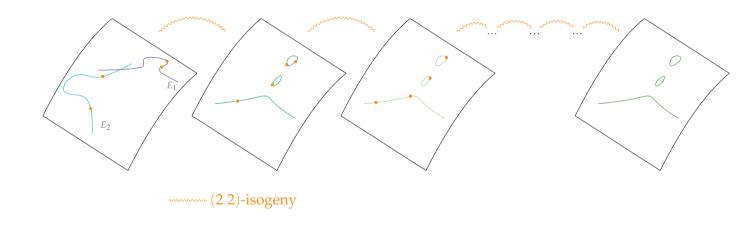
- ▶ in SIKE there are tricks because  $E_0$  was used so nontrivial endomorphisms can be used instead of [c]
- ▶ more generally, you can consider an 8-dimensional isogeny

$$E^4 \times E_B^4 \to E^4 \times E_B^4$$

and take the easy isogenies  $[c_1]$ ,  $[c_2]$ ,  $[c_3]$ ,  $[c_4]$  since those exist such that

$$3^b - 2^a = c_1^2 + c_2^2 + c_3^2 + c_4^2$$

# DIFFERENT TYPES OF ABELIAN SURFACES



# ISOGENY REPRESENTATIONS

Several ways to represent degree-d isogeny  $\varphi$ :

ightharpoonup as a rational map f(x), where

$$\varphi: (x, y) \mapsto (f(x), y \cdot g(x))$$

and d need be smooth to write as composition

# ISOGENY REPRESENTATIONS

Several ways to represent degree-d isogeny  $\varphi$ :

ightharpoonup as a rational map f(x), where

$$\varphi: (x, y) \mapsto (f(x), y \cdot g(x))$$

and *d* need be smooth to write as composition

- ightharpoonup as ker  $\varphi$ , typically through generators, but computations must be feasible
  - e.g. Vélu for large prime *d* cannot be done

# ISOGENY REPRESENTATIONS

Several ways to represent degree-d isogeny  $\varphi$ :

ightharpoonup as a rational map f(x), where

$$\varphi: (x,y) \mapsto (f(x), y \cdot g(x))$$

and *d* need be smooth to write as composition

- $\blacktriangleright$  as ker  $\varphi$ , typically through generators, but computations must be feasible
  - e.g. Vélu for large prime *d* cannot be done
- ▶ as kernel ideal *I* via Deuring correspondence but
  - must be smoothened via KLPT to be useful
  - requires knowledge of endomorphism ring

# NEW ISOGENY REPRESENTATION

#### Theorem 2

Let  $\varphi: E_1 \to E_2$  be an isogeny of (known) degree d, with interpolation data

$$P_1, \varphi(P_1), \ldots, P_r, \varphi(P_r)$$

such that  $\langle P_1, \dots P_r \rangle$  has (smooth) order N > 4d. Then there exists a polynomial-time algorithm for evaluating  $\varphi$ .

## NEW ISOGENY REPRESENTATION

#### Theorem 2

Let  $\varphi: E_1 \to E_2$  be an isogeny of (known) degree d, with interpolation data

$$P_1, \varphi(P_1), \ldots, P_r, \varphi(P_r)$$

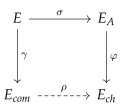
such that  $\langle P_1, \dots P_r \rangle$  has (smooth) order N > 4d. Then there exists a polynomial-time algorithm for evaluating  $\varphi$ .

Biggest issue is that polynomial-time is "theoretical":

- ▶ sometimes we need to use isogenies in dimension 4 and 8, with the dimension being an exponent in the complexity
- ideally we have parameters such that dimension is 2 and  $N = 2^a$

# **SQISIGN**

## Consider the commitment scheme

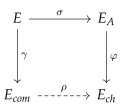


## where

 $ightharpoonup \sigma$  is the secret key,  $\gamma$  is the commitment,  $\varphi$  is the challenge

## **SQISIGN**

#### Consider the commitment scheme



#### where

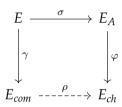
 $ightharpoonup \sigma$  is the secret key,  $\gamma$  is the commitment,  $\varphi$  is the challenge

## Naively:

respond with  $\rho = \varphi \circ \sigma \circ \hat{\gamma}$  but this reveals  $\sigma$ !

## **SQISIGN**

#### Consider the commitment scheme



#### where

 $ightharpoonup \sigma$  is the secret key,  $\gamma$  is the commitment,  $\varphi$  is the challenge

## Naively:

respond with  $\rho = \varphi \circ \sigma \circ \hat{\gamma}$  but this reveals  $\sigma$ !

#### What works:

- $\blacktriangleright$  smooth this  $\rho$  with KLPT to a different-degree isogeny
- ▶ doesn't scale well and zero-knowledge assumption is ad hoc

## SQISignHD:

▶ take  $\rho: E_{com} \rightarrow E_{ch}$  represented by interpolation data for (random) small-degree isogeny

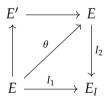
## SQISignHD:

- ▶ take  $\rho: E_{com} \to E_{ch}$  represented by interpolation data for (random) small-degree isogeny
- scales better and cleaner security reduction
- verification is slower since requires dimension 4

## SQISignHD:

- ▶ take  $\rho: E_{com} \to E_{ch}$  represented by interpolation data for (random) small-degree isogeny
- scales better and cleaner security reduction
- verification is slower since requires dimension 4

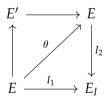
## More tricks on the quaternion side, Clapoti:



## SQISignHD:

- take  $\rho: E_{com} \to E_{ch}$  represented by interpolation data for (random) small-degree isogeny
- scales better and cleaner security reduction
- verification is slower since requires dimension 4

More tricks on the quaternion side, Clapoti:



 $\blacktriangleright$  given an endomorphism  $\theta: E \to E$  and an ideal I, we can find two equivalent ideals such that

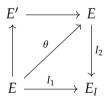
$$I_1 \sim I_2 \sim I$$
,  $Norm(I_1) + Norm(I_2) = 2^a$ ,

allowing us to compute the isogeny from *I* without smoothening!

## SQISignHD:

- ▶ take  $\rho: E_{com} \to E_{ch}$  represented by interpolation data for (random) small-degree isogeny
- scales better and cleaner security reduction
- verification is slower since requires dimension 4

More tricks on the quaternion side, Clapoti:



▶ given an endomorphism  $\theta$  :  $E \to E$  and an ideal I, we can find two equivalent ideals such that

$$I_1 \sim I_2 \sim I$$
,  $Norm(I_1) + Norm(I_2) = 2^a$ ,

allowing us to compute the isogeny from *I* without smoothening!

▶ SQISign2D-East, SQISign2D-West, SQIPrime2D with verification in dimension 2!

### **CURRENT STATE**

One-dimensional isogeny-based cryptography is rather well understood, apart from perhaps

- ▶ we can't generate a supersingular *E* without knowing its endomorphism ring
- ▶ KLPT could be improved since the resulting isogeny degree is too large

### **CURRENT STATE**

One-dimensional isogeny-based cryptography is rather well understood, apart from perhaps

- ▶ we can't generate a supersingular *E* without knowing its endomorphism ring
- ▶ KLPT could be improved since the resulting isogeny degree is too large

Higher-dimensional isogenies have given us tools to make new protocols:

- ► FESTA, QFESTA
- ► SCALLOP-HD
- ▶ SQISignHD, SQISign2D-East, SQISign2D-West, SQIPrime2D
- ► PRISM
- **.**..

All of these protocols use a mixture between one-dimensional and higher-dimensional...

## FUTURE PATHS: COMPUTATIONS?

## Computational cost:

- efficient formulae exist for
  - isogenies of degree 2 and 3 in dimension 2
  - isogenies of degree 2 in dimension 4
- ▶ workable formulae exist for
  - isogenies of degree  $\ell$  in dimension 2

## **FUTURE PATHS: COMPUTATIONS?**

## Computational cost:

- efficient formulae exist for
  - isogenies of degree 2 and 3 in dimension 2
  - isogenies of degree 2 in dimension 4
- workable formulae exist for
  - isogenies of degree  $\ell$  in dimension 2

#### Would be nice to have:

- ▶ more efficient formulae for other degrees/dimensions
  - given how  $\tilde{\mathcal{O}}(\sqrt{\deg \varphi})$  in dimension 1, can we expect  $\tilde{\mathcal{O}}((\deg \varphi)^{g/2})$  in dimension g?
- constant time for protocols that need it

## General question:

▶ Is it worth it to consider cryptographic protocols strictly in dimension g > 1?

## General question:

▶ Is it worth it to consider cryptographic protocols strictly in dimension g > 1?

For this we will need new and efficient algorithms:

- ► faster isogenies in higher dimensions
- ▶ algorithmic tools similar to dimension 1:
  - KLPT<sup>2</sup> exists now!

KLPT<sup>2</sup> uses the Ibukiyama–Katsura–Oort correspondence:

• fix a supersingular  $E_0$  with endomorphism ring  $\mathcal{O}_0$ , then the superspecial principally polarised abelian surfaces (up to polarised isomorphism) are 1–1 with the set

$$\operatorname{Mat}(E_0 \times E_0) := \left\{ \begin{pmatrix} s & r \\ \bar{r} & t \end{pmatrix}, \quad s, t \in \mathbb{Z}_{>0}, r \in \mathcal{O}_0, st - r\bar{r} = 1 \right\} \quad \subset \operatorname{GL}_2(\mathcal{O}_0),$$

up to the following equivalence relation:

$$g_1 \sim g_2 \in \text{Mat}(E_0 \times E_0) \quad \Leftrightarrow \quad \exists u \in GL_2(\mathcal{O}_0), \quad u^*g_1u = g_2$$

KLPT<sup>2</sup> uses the Ibukiyama–Katsura–Oort correspondence:

▶ fix a supersingular  $E_0$  with endomorphism ring  $\mathcal{O}_0$ , then the superspecial principally polarised abelian surfaces (up to polarised isomorphism) are 1–1 with the set

$$\operatorname{Mat}(E_0 \times E_0) := \left\{ \begin{pmatrix} s & r \\ \overline{r} & t \end{pmatrix}, \quad s, t \in \mathbb{Z}_{>0}, r \in \mathcal{O}_0, st - r\overline{r} = 1 \right\} \quad \subset \operatorname{GL}_2(\mathcal{O}_0),$$

up to the following equivalence relation:

$$g_1 \sim g_2 \in \text{Mat}(E_0 \times E_0) \quad \Leftrightarrow \quad \exists u \in GL_2(\mathcal{O}_0), \quad u^*g_1u = g_2$$

## Theorem 3 (KLPT<sup>2</sup>)

There exists a polynomial-time algorithm which upon input  $g_1, g_2 \in \operatorname{Mat}(E_0 \times E_0)$  and a prime number  $\ell \neq p$ , under plausible heuristic assumptions, returns  $\gamma \in \operatorname{M}_2(\mathcal{O}_0)$  such that

$$\gamma^* g_2 \gamma = \ell^e g_1$$

where  $\ell^e \in O(p^{25+\varepsilon})$ .

One can turn (supersingular) elliptic curves and isogenies into graphs where

- vertices are elliptic curves (up to isomorphism)
- edges are isogenies (can be made undirected due to dual isogenies)

One can turn (supersingular) elliptic curves and isogenies into graphs where

- vertices are elliptic curves (up to isomorphism)
- edges are isogenies (can be made undirected due to dual isogenies)

In dimension 1 these are well understood and have nice properties:

ightharpoonup connectedness,  $(\ell+1)$ -regular, Ramanujan (rapid mixing), etc

One can turn (supersingular) elliptic curves and isogenies into graphs where

- vertices are elliptic curves (up to isomorphism)
- edges are isogenies (can be made undirected due to dual isogenies)

In dimension 1 these are well understood and have nice properties:

ightharpoonup connectedness,  $(\ell+1)$ -regular, Ramanujan (rapid mixing), etc

When going to dimension g > 1 we definitely want

- ightharpoonup superspecial
- ▶ elliptic curves → principally polarised abelian varieties

In dimension g > 1 there are issues if we generalize geometrically/"naively":

- ▶ lots of small cycles making it awkward to walk around "randomly" in the graph
  - two isogenies with kernel  $(\mathbb{Z}/(\ell\mathbb{Z}))^2$  can concatenate to one with kernel

$$\mathbb{Z}/(\ell^2\mathbb{Z})\times(\mathbb{Z}/(\ell\mathbb{Z}))^2$$

instead of  $(\mathbb{Z}/(\ell^2\mathbb{Z}))^2$ 

In dimension g > 1 there are issues if we generalize geometrically/"naively":

- ▶ lots of small cycles making it awkward to walk around "randomly" in the graph
  - two isogenies with kernel  $(\mathbb{Z}/(\ell\mathbb{Z}))^2$  can concatenate to one with kernel

$$\mathbb{Z}/(\ell^2\mathbb{Z}) \times (\mathbb{Z}/(\ell\mathbb{Z}))^2$$

instead of  $(\mathbb{Z}/(\ell^2\mathbb{Z}))^2$ 

- rapid mixing properties are okay but not as good
- ▶ several distinct types of nodes creating (connected?) subgraphs

In dimension g > 1 there are issues if we generalize geometrically/"naively":

- ▶ lots of small cycles making it awkward to walk around "randomly" in the graph
  - two isogenies with kernel  $(\mathbb{Z}/(\ell\mathbb{Z}))^2$  can concatenate to one with kernel

$$\mathbb{Z}/(\ell^2\mathbb{Z}) \times (\mathbb{Z}/(\ell\mathbb{Z}))^2$$

instead of  $(\mathbb{Z}/(\ell^2\mathbb{Z}))^2$ 

- rapid mixing properties are okay but not as good
- several distinct types of nodes creating (connected?) subgraphs

On the bright side, we do have  $\mathcal{O}(p^{2g-1})$  vertices:

- ▶ in dimension 1 we have  $p/12 + \varepsilon$
- ▶ in dimension 2 we have  $p^3/2880 + \mathcal{O}(p^2)$
- **.**..

## Alternative construction for graph:

- let L be a totally real field with strict class number one, e.g.  $L = \mathbb{Q}(\sqrt{5})$ , and ring of integers  $\mathcal{O}_L$ , e.g.  $\mathcal{O}_L = \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$
- fix a supersingular  $E_0$  with endomorphism ring  $\mathcal{O}_0$

## Alternative construction for graph:

- let L be a totally real field with strict class number one, e.g.  $L = \mathbb{Q}(\sqrt{5})$ , and ring of integers  $\mathcal{O}_L$ , e.g.  $\mathcal{O}_L = \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$
- fix a supersingular  $E_0$  with endomorphism ring  $\mathcal{O}_0$
- consider the superspecial principally polarised abelian varieties with real multiplication, i.e.

$$(E^g, \iota : \mathcal{O}_L \to \operatorname{End}(E^g)),$$

which are the vertices of our graph, with "starting vertex"

$$E \otimes_{\mathbb{Z}} \mathcal{O}_L$$

and *g* is the degree of *L* 

▶ the edges of our graph are given by right ideals  $I_i$  of  $\mathcal{O}_0 \otimes \mathcal{O}_L$  and we can "walk" in our graph by computing

$$I_i \otimes_{\mathcal{O}_0 \otimes \mathcal{O}_L} (E \otimes_{\mathbb{Z}} \mathcal{O}_L)$$

This alternative construction has a lot of the properties we desire:

- connected
- ► Ramanujan (so optimal rapid mixing)
- ► *k*-regular
- you can make it undirected and avoid loops
- ▶ avoid the small cycles from the geometric construction

This alternative construction has a lot of the properties we desire:

- connected
- Ramanujan (so optimal rapid mixing)
- ► *k*-regular
- you can make it undirected and avoid loops
- avoid the small cycles from the geometric construction
- vertex set is(?) uniform
- the algebraic approach may make this easier to generalize KLPT

This alternative construction has a lot of the properties we desire:

- connected
- Ramanujan (so optimal rapid mixing)
- ► *k*-regular
- you can make it undirected and avoid loops
- avoid the small cycles from the geometric construction
- vertex set is(?) uniform
- the algebraic approach may make this easier to generalize KLPT

The "downside" is that we have less vertices, namely

$$pprox 2\left(rac{p}{4\pi^2}
ight)^g d_L^{3/2}.$$

instead of  $\mathcal{O}(p^{2g-1})$ .

## ISOGENIES: A BRAND NEW DAY

Despite the fall of SIDH/SIKE, things actually improved for the better!

- existing constructions got faster
- cleaner security assumptions
- new toolboxes for protocol constructions
- somewhat uncharted terrain with lots left to discover:
  - more protocols and optimized versions of the current ones
  - computational speedups
  - algebraic and graph-theoretical results

## ISOGENIES: A BRAND NEW DAY

Despite the fall of SIDH/SIKE, things actually improved for the better!

- existing constructions got faster
- cleaner security assumptions
- new toolboxes for protocol constructions
- somewhat uncharted terrain with lots left to discover:
  - more protocols and optimized versions of the current ones
  - computational speedups
  - algebraic and graph-theoretical results

Isogeny-based cryptography is alive and well with more activity than ever!