ISOGENY-BASED CRYPTOGRAPHY: A BRAND NEW DAY

CENTRAL EUROPEAN CONFERENCE ON CRYPTOLOGY

Thomas Decru

COSIC KU Leuven, Belgium

June 20th, 2025, Budapest



ELLIPTIC CURVE GROUP LAW



ELLIPTIC CURVE GROUP LAW



ELLIPTIC CURVE GROUP LAW



ELLIPTIC CURVE GROUP LAW



ELLIPTIC CURVE GROUP LAW




ELLIPTIC CURVE GROUP LAW

2P



ELLIPTIC CURVE GROUP LAW



ELLIPTIC CURVE GROUP LAW

2P



ELLIPTIC CURVE GROUP LAW

2P



ELLIPTIC CURVE GROUP LAW

2P



ELLIPTIC CURVE GROUP LAW

3P

2P



ELLIPTIC CURVE GROUP LAW



ELLIPTIC CURVE GROUP LAW



ELLIPTIC CURVE GROUP LAW



ELLIPTIC CURVE GROUP LAW




ELLIPTIC CURVE GROUP LAW

4P




ELLIPTIC CURVE GROUP LAW

4P



ELLIPTIC CURVE GROUP LAW

4P

3P

2P



ELLIPTIC CURVE GROUP LAW

4P

3P

2P



ELLIPTIC CURVE GROUP LAW

4P




ELLIPTIC CURVE GROUP LAW

4P




ELLIPTIC CURVE GROUP LAW

4P



ELLIPTIC CURVE GROUP LAW

4P

3P

2P

5P



ELLIPTIC CURVE GROUP LAW

4P

3P

2P

5P



ELLIPTIC CURVE GROUP LAW

3P

2P

4P
5P




ELLIPTIC CURVE GROUP LAW

3P

2P

4P
5P




ELLIPTIC CURVE GROUP LAW

4P



ELLIPTIC CURVE GROUP LAW

4P



ELLIiPTIC CURVE DIFFIE-FHELLMAN




ELLIiPTIC CURVE DIFFIE-FHELLMAN

Public information: point P € E

2/35



ELLIiPTIC CURVE DIFFIE-FHELLMAN

Public information: point P € E

a \L Private integer b

Private integer a

W

2/35



ELLIiPTIC CURVE DIFFIE-FHELLMAN

Public information: point P € E

A Private integer b

—————————————————————— > ! RE \L
{mmmmmmmmmmmm e ) QBob:bP

Private integer a

QAlice =aP

2/35



ELLIPTIC CURVE DIFFIE-HELLMAN

Public information: point P € E

Private integer a Private integer b

Qalice = aP QBob = bP




ELLIPTIC CURVE DIFFIE-HELLMAN

Public information: point P € E

Private integer a Private integer b

QBob =bP

— -
QA]ice+Bob = aQBob MCE QBob+Alice = bQAlice

QAlice =aP il {mmmmm




ELLIPTIC CURVE DIFFIE-HELLMAN

Private integer a

QAlice =aP

QAlice+Bob = 4QBob AECE
= (ab)P

Public information: point P € E

Private integer b

QBob =bP

QBob+Alice = bQAlice
= (ba)P



ELLIPTIC CURVE DIFFIE-HELLMAN

Public information: point P € E

Private integer a Private integer b

QAhCe =aP {--mmmmmmm - QBob = bP

QAhce+Bob aQBob A‘ CE QBob+Alice = bQAlice

= (ba)P

CVE
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finding short vectors in lattices
decoding for random linear codes
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NIST initiated a Post-Quantum Cryptography Standardization:
» December 20th, 2016: call to replace ECDH/RSA/...based on new hard problems:

finding short vectors in lattices
decoding for random linear codes
solving nonlinear systems of equations
finding isogenies between elliptic curves

» December 21st, 2017: 69 proposals accepted for round 1.
» January 30th, 2019: 26 remainders to round 2.
» July 22nd, 2020: 15 remainders to round 3.
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NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

» July 5th, 2022:

® 3 winners for digital signatures: CRYSTALS-Dilithium, FALCON, SPHINCS+
® 1 winner for public key exchange: CRYSTALS-Kyber
® 4 alternatives for public key exchange to round 4: BIKE, Classical McEliece, HQC, SIKE

» July 30th, 2022: SIKE'
» March 11th, 2025: HQC was chosen for standardization

New call for additional signature proposals in September 2022 to promote diversification!
» June 1st, 2023: 40 proposals accepted for round 1
» October 24th, 2024: 14 remainders for round 2, including SQISign!
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SQISIGN

SQISign still remains, the only isogeny-based submission!
» The good:
® extremely compact (similar to current ECDSA)
e fast verification
e diversifies
» The bad:
® slow signing
® doesn’t scale well
» The ugly:
® security assumption is complex and rather ad hoc
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HARD PROBLEMS

General:
Given E; and E», find any isogeny ¢ : E; — Eo.
Attacks over IFy:

> classical O(g'/*)
> quantum O(q"/®)

Often:
Given E; and E; supersingular, find an ¢"-isogeny ¢ : E; — Eo.
Isogenies need to be both represented and evaluated!

> representation typically by ker ¢ (i.e. all points mapped to neutral element co)
> evaluation typically by Vélu-type formulae (i.e. complexity O(deg ¢) or best case O(y/deg ©))



RELATED HARD PROBLEMS

Endomorphism-ring-finding problem:

Given E supersingular, find all endomorphisms ¢ : E — E.



RELATED HARD PROBLEMS

Endomorphism-ring-finding problem:

Given E supersingular, find all endomorphisms ¢ : E — E.

One-endomorphism-finding problem:

Given E supersingular, find one (nontrivial) endomorphism
¢ :E— E.
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ENDOMORPHISM RING EXAMPLE

Assume p = 3 mod 4 with
Eo/F V¥ =x+x

Multiplication-by-k-map:

[k] :Ey— Ey
P kP
“Complex-multiplication-map”:
L EO — EO

(x’y) = (—X, v _1]/)
Frobenius map:

T EO —>E0
(x,y) = (. y)
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DEURING CORRESPONDENCE

We can concatenate endomorphisms:
tou=[-1], mom=[-p], tom=[-1lomou

Under the Deuring correspondence, there is an isomorphism between the endomorphism ring of
supersingular elliptic curves and maximal orders in the quaternion algebra B}, ., i.e. Q(1,1,],k) with

F=-1, jf=-p,  k=i=-ji

For the endomorphism ring of Ey, one possible identification is given by

1] —1, L, T
and then Lok
End(Eo)%JOO: <1,Z,l;],;— >
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» the endomorphism ring End(E) of a supersingular elliptic curve E is equivalent to a maximal
order Op in the quaternion algebra By
» anisogeny ¢ : Eg — Ej is equivalent to a (connecting kernel) ideal I, which is a left ideal of Oy
and a right ideal of O, with
Norm(I) = deg



DEURING CORRESPONDENCE

Under the Deuring correspondence:

» the endomorphism ring End(E) of a supersingular elliptic curve E is equivalent to a maximal
order Op in the quaternion algebra By

» anisogeny ¢ : Eg — Ej is equivalent to a (connecting kernel) ideal I, which is a left ideal of Oy
and a right ideal of O, with
Norm(I) = deg

KLPT is an algorithmic tool which allows us to find equivalent ideals | ~ I of different norm!

> The output is a lot larger than optimal, i.e. O(p>+%)
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ISOGENY-BASED DIFFIE-HELLMAN?

Public information: curve E

Private isogeny ¢,

©a * E — Elice

Private isogeny ¢y
¢p : E — Epob

¥PBob+Alice = - - ¢

13 /35
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CSIDH

We can “make this commutative” by restricting to:
> supersingular elliptic curves defined over Fy, instead of F

> restricting to consider the endomorphism subring defined over F, instead of F», which is
isomorphic to an order O in an imaginary quadratic field

Theorem 1

The class group cl(O) acts freely and transitively on the set of elliptic curves E with Endy,(E) = O, where
7 € O corresponds to F,-Frobenius.

This results in CSIDH:
» Alice samples [a] € cl(O) and act on E to get to [a]E
» Bob samples [b] € cl(O) and act on E to get to [b]E
» they both end up on [ab]E = [ba]E
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CSIDH SETTING

The good:

> extremely flexible due to abstraction as group action!

The bad:
» this is essentially the abelian hidden-shift problem so subexponential quantum attacks exist
® (there’s also some controversy about how high parameters should be for this)
» despite speedups and the fact that everything happens over F, it’s quite slow:
® you can’t randomly sample from cl(O), so we resort to ideals of the form

B,r+ 15,7 £1)2...(587, 7 £1)7*
with e; € [-5; 5], corresponding to an isogeny of degree (at most)

(3-5....-587)°
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SIDH COMMUTATIVE DIAGRAM

> Alice and Bob choose (public) bases (P4, Q) = E[2°] and (Pg, Qp) = E[3"]
» Alice chooses ¢, such that ker ¢, = (P4 + 5,Qn)

» Bob chooses ¢, such that ker ¢, = (Pp + 5,Qp)

» Alice also shares ¢,(Pp), v,(Qp) and Bob shares ¢;(P4), pp(Qa)!

Pa
E ? EAlice

Pb ‘/9[,

Oa
EBOb ? EAlice+Bob

with
» kerf, = (pp(Pa) + Sa05(Qa))
» ker 0, = (0,(Pg) + sppa(Qp))

> ker(0; o pp) = ker(0y 0 @) = (Pa +5,Qa, Pp + 5,Qp)



KANI'S LEMMA

Lemma.[Ernst Kani, 1997]

Let f = (f, H1, H>) be an isogeny diamond configuration of order N from E; to E; and putn = N/d
and k; = n;/d, where d = (n1,n) and n; = #H,. Then f factors (uniquely) over [d], i.e. f = f o [d], and
there is a unique reducible anti-isometry ¢ = ¢ : E1[N] — E;[N] such that

D(kixy +koxa) = f(x2 — x1),  Va; € H; = [n] 7L (H)),

and every reducible anti-isometry is of this form. Furthermore, if f = (', H|, H}) is another isogeny
diamond configuration, then we have iy = ¢y <= f~f.
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KANI'S LEMMA

Consider the commutative diagram

E2 # E4
with deg o = deg~y and deg 5 = deg 6, then

q):szE3—>E1><E4

vo- (% 9)2)

is a (deg a + deg 3, deg o + deg 5)-isogeny between principally polarised abelian surfaces with

ker ® = {(a(P),5(P)) | P € E1[deg o + deg 3]} .



KANI'S LEMMA APPLIED

Given the one-dimensional isogeny

\
N

w

this determines the two-dimensional isogeny

ANNAN- (M + 1, m + n)-isogeny

19 / 35



ATTACK ON SIDH /SIKE

Assume that
> Alice computes a 2*-isogeny
» Bob computes a 3b—isogeny wp : E — Ep and shares pp(Pa), ¢5(Qa) as well
> 27 — 3% = (2 is a perfect square (for simplification purposes)
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ATTACK ON SIDH /SIKE

Assume that
> Alice computes a 2*-isogeny
» Bob computes a 3b—isogeny wp : E — Ep and shares pp(Pa), ¢5(Qa) as well
> 27 — 3% = (2 is a perfect square (for simplification purposes)

Consider the diagram
E_ % Eg

[e] l[c}

EL)EB

where 3% 4 ¢? = 2, giving rise to the (29, 2)-isogeny with (known!) kernel

ker & = {(cP, og(P) | P € E[27]}

N
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ATTACK ON SIDH /SIKE

To complete the attack:
> compute the (2%,2%)-isogeny
® this can be done by decomposing as a chain of (2, 2)-isogenies of length a

> extract pp from this since this isogeny is given by

ra- (5 )

—Pb

What if 3¥ — 27 is not a square?

» in SIKE there are tricks because Ej was used so nontrivial endomorphisms can be used instead
of [c]
» more generally, you can consider an 8-dimensional isogeny

E* x E3 — E* x E}
and take the easy isogenies [c1], [c2], [c3], [c4] since those exist such that

3 =2+ 3 43+



DIFFERENT TYPES OF ABELIAN SURFACES

s (2,2)-isogeny

22 /35
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ISOGENY REPRESENTATIONS

Several ways to represent degree-d isogeny :
» as a rational map f(x), where
(oY) = (f(x),y-8(x))
and d need be smooth to write as composition
> as ker ¢, typically through generators, but computations must be feasible
® e.g. Vélu for large prime d cannot be done
» as kernel ideal I via Deuring correspondence but

® must be smoothened via KLPT to be useful
® requires knowledge of endomorphism ring

N
w»



NEW ISOGENY REPRESENTATION

Theorem 2
Let ¢ : E1 — Ej be an isogeny of (known) degree d, with interpolation data

P1780(P1)7"'5P?”()0(P7’)

such that (Py, . ..Py) has (smooth) order N > 4d. Then there exists a polynomial-time algorithm for
evaluating .



NEW ISOGENY REPRESENTATION

Theorem 2
Let ¢ : E1 — Ej be an isogeny of (known) degree d, with interpolation data

P1780(P1)7"'5P?”()0(P7’)

such that (Py, . ..Py) has (smooth) order N > 4d. Then there exists a polynomial-time algorithm for
evaluating .

Biggest issue is that polynomial-time is “theoretical”:

> sometimes we need to use isogenies in dimension 4 and 8, with the dimension being an
exponent in the complexity

» ideally we have parameters such that dimension is 2 and N = 2*
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Consider the commitment scheme
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p
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where

» o is the secret key, v is the commitment, ¢ is the challenge
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SQISIGN

Consider the commitment scheme
o

E—— E4

p
Ecom ”””” ” Ech

where
» o is the secret key, v is the commitment, ¢ is the challenge

Naively:
» respond with p = ¢ o 0 0 4 but this reveals ¢!
What works:
» smooth this p with KLPT to a different-degree isogeny
» doesn’t scale well and zero-knowledge assumption is ad hoc

N
a
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SQISIGN HIGHER DIMENSIONS

SQISignHD:
» take p : Ecom — E represented by interpolation data for (random) small-degree isogeny
» scales better and cleaner security reduction

» verification is slower since requires dimension 4

More tricks on the quaternion side, Clapoti:

» given an endomorphism ¢ : E — E and an ideal I, we can find two equivalent ideals such that
L~ ~1, Norm(l;) + Norm(Ip) = 2%,

allowing us to compute the isogeny from I without smoothening!
> SQISign2D-East, SQISign2D-West, SQIPrime2D with verification in dimension 2!
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CURRENT STATE

One-dimensional isogeny-based cryptography is rather well understood, apart from perhaps
> we can’t generate a supersingular E without knowing its endomorphism ring

» KLPT could be improved since the resulting isogeny degree is too large

Higher-dimensional isogenies have given us tools to make new protocols:
» FESTA, QFESTA
» SCALLOP-HD
> SQISignHD, SQISign2D-East, SQISign2D-West, SQIPrime2D
» PRISM
> ...

All of these protocols use a mixture between one-dimensional and higher-dimensional. . .
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® jsogenies of degree 2 in dimension 4
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FUTURE PATHS: COMPUTATIONS?

Computational cost:
» efficient formulae exist for

® isogenies of degree 2 and 3 in dimension 2
® jsogenies of degree 2 in dimension 4

» workable formulae exist for
® isogenies of degree ¢ in dimension 2

Would be nice to have:
» more efficient formulae for other degrees/dimensions
* given how O(y/deg¢) in dimension 1, can we expect O((deg ¢)$/?) in dimension g?

» constant time for protocols that need it



FUTURE PATHS: PROTOCOLS AND ALGORITHMS IN HD?

General question:

» Is it worth it to consider cryptographic protocols strictly in dimension g > 1?
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General question:

» Is it worth it to consider cryptographic protocols strictly in dimension g > 1?

For this we will need new and efficient algorithms:
> faster isogenies in higher dimensions
» algorithmic tools similar to dimension 1:
® KLPT? exists now!

N
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KLPT? uses the Ibukiyama-Katsura-Oort correspondence:

» fix a supersingular Ey with endomorphism ring Oy, then the superspecial principally polarised
abelian surfaces (up to polarised isomorphism) are 1-1 with the set

Mat(Ey x Ep) := {(i :) , St € Zvg,r € Oy,st—17= 1} C GLy(0y),

up to the following equivalence relation:

g1~ € Mat(Eo X Eo) =2 Ju € GLQ(O()), u*glu =&
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KLPT? uses the Ibukiyama-Katsura-Oort correspondence:

» fix a supersingular Ey with endomorphism ring Oy, then the superspecial principally polarised
abelian surfaces (up to polarised isomorphism) are 1-1 with the set

Mat(Ey x Ep) := {(i :) , St € Zvg,r € Oy,st—17= 1} C GLy(0y),

up to the following equivalence relation:

g1~ € Mat(Eo X Eo) =2 Ju € GLQ(O()), u*glu =&

Theorem 3 (KLPT?)

There exists a polynomial-time algorithm which upon input g1,g> € Mat(Ey x Eg) and a prime number
¢ # p, under plausible heuristic assumptions, returns v € My (Oy) such that

782y = £

where (¢ € O(p*+¢).
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One can turn (supersingular) elliptic curves and isogenies into graphs where
> vertices are elliptic curves (up to isomorphism)
> edges are isogenies (can be made undirected due to dual isogenies)

In dimension 1 these are well understood and have nice properties:

» connectedness, (¢ + 1)-regular, Ramanujan (rapid mixing), etc

When going to dimension g > 1 we definitely want
» supersingular — superspecial
» elliptic curves — principally polarised abelian varieties
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In dimension g > 1 there are issues if we generalize geometrically /“naively”:
» lots of small cycles making it awkward to walk around “randomly” in the graph
* two isogenies with kernel (Z/(¢Z))? can concatenate to one with kernel

Z/(CZ) x (Z/((L))*

instead of (Z/((*7Z))?
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In dimension g > 1 there are issues if we generalize geometrically /“naively”:
» lots of small cycles making it awkward to walk around “randomly” in the graph
* two isogenies with kernel (Z/(¢Z))? can concatenate to one with kernel

Z/(CZ) x (Z/((L))*

instead of (Z/((*Z))?
» rapid mixing properties are okay but not as good
» several distinct types of nodes creating (connected?) subgraphs

On the bright side, we do have O(p?~!) vertices:
» in dimension 1 we have p/12 + ¢
» in dimension 2 we have p3/2880 + O(p?)
> ...

W
¥
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» let L be a totally real field with strict class number one, e.g. L = Q(\/g), and ring of integers O,

1++/5
2

» fix a supersingular Ey with endomorphism ring Oy

eg. O =172
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Alternative construction for graph:
» let L be a totally real field with strict class number one, e.g. L = Q(\/g), and ring of integers O,

1++/5
2

» fix a supersingular Ey with endomorphism ring Oy

eg. O =172

» consider the superspecial principally polarised abelian varieties with real multiplication, i.e.
(E&, 1 : Op — End(E?)),
which are the vertices of our graph, with “starting vertex”
E®z Or

and g is the degree of L
» the edges of our graph are given by right ideals I; of Oy ® Or and we can “walk” in our graph
by computing
I ®oy0, (E®z OL)
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This alternative construction has a lot of the properties we desire:
» connected
» Ramanujan (so optimal rapid mixing)
» k-regular
» you can make it undirected and avoid loops

» avoid the small cycles from the geometric construction
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This alternative construction has a lot of the properties we desire:

>

vVvyvyVvVvyvyypy

connected

Ramanujan (so optimal rapid mixing)

k-regular

you can make it undirected and avoid loops

avoid the small cycles from the geometric construction
vertex set is(?) uniform

the algebraic approach may make this easier to generalize KLPT

The “downside” is that we have less vertices, namely

~ 2 (%)gdiﬂ.

instead of O(p®~1).
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Despite the fall of SIDH/SIKE, things actually improved for the better!
> existing constructions got faster
» cleaner security assumptions
» new toolboxes for protocol constructions
» somewhat uncharted terrain with lots left to discover:

® more protocols and optimized versions of the current ones
® computational speedups
® algebraic and graph-theoretical results



ISOGENIES: A BRAND NEW DAY

Despite the fall of SIDH/SIKE, things actually improved for the better!
> existing constructions got faster
» cleaner security assumptions
» new toolboxes for protocol constructions
» somewhat uncharted terrain with lots left to discover:

® more protocols and optimized versions of the current ones
® computational speedups
® algebraic and graph-theoretical results

Isogeny-based cryptography is alive and well with more activity than ever!



