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ELLIPTIC CURVE DIFFIE–HELLMAN

Public information: point P ∈ E

Private integer a Private integer b

QAlice = aP QBob = bP

QAlice

QBob
QAlice+Bob = aQBob QBob+Alice = bQAlice

= (ab)P = (ba)P
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SHOR’S QUANTUM ALGORITHM
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NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

NIST initiated a Post-Quantum Cryptography Standardization:
▶ December 20th, 2016: call to replace ECDH/RSA/. . . based on new hard problems:

• finding short vectors in lattices
• decoding for random linear codes
• solving nonlinear systems of equations
• finding isogenies between elliptic curves
• . . .

▶ December 21st, 2017: 69 proposals accepted for round 1.
▶ January 30th, 2019: 26 remainders to round 2.
▶ July 22nd, 2020: 15 remainders to round 3.
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NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

▶ July 5th, 2022:
• 3 winners for digital signatures: CRYSTALS-Dilithium, FALCON, SPHINCS+
• 1 winner for public key exchange: CRYSTALS-Kyber
• 4 alternatives for public key exchange to round 4: BIKE, Classical McEliece, HQC, SIKE

▶ July 30th, 2022: SIKE†

▶ March 11th, 2025: HQC was chosen for standardization

New call for additional signature proposals in September 2022 to promote diversification!
▶ June 1st, 2023: 40 proposals accepted for round 1
▶ October 24th, 2024: 14 remainders for round 2, including SQISign!
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SQISIGN

SQISign still remains, the only isogeny-based submission!
▶ The good:

• extremely compact (similar to current ECDSA)
• fast verification
• diversifies

▶ The bad:
• slow signing
• doesn’t scale well

▶ The ugly:
• security assumption is complex and rather ad hoc
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ISOGENIES
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HARD PROBLEMS

General:
Given E1 and E2, find any isogeny φ : E1 → E2.

Attacks over Fq:
▶ classical Õ(q1/4)

▶ quantum Õ(q1/8)

Often:
Given E1 and E2 supersingular, find an ℓn-isogeny φ : E1 → E2.
Isogenies need to be both represented and evaluated!
▶ representation typically by kerφ (i.e. all points mapped to neutral element ∞)
▶ evaluation typically by Vélu-type formulae (i.e. complexity O(degφ) or best case Õ(

√
degφ))
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RELATED HARD PROBLEMS

Endomorphism-ring-finding problem:
Given E supersingular, find all endomorphisms φ : E → E.

One-endomorphism-finding problem:
Given E supersingular, find one (nontrivial) endomorphism
φ : E → E.
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ENDOMORPHISM RING EXAMPLE

Assume p ≡ 3 mod 4 with
E0/Fp2 : y2 = x3 + x.

Multiplication-by-k-map:

[k] : E0 → E0

P 7→ kP

“Complex-multiplication-map”:

ι : E0 → E0

(x, y) 7→ (−x,
√
−1y)

Frobenius map:

π : E0 → E0

(x, y) 7→ (xp, yp)
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DEURING CORRESPONDENCE

We can concatenate endomorphisms:

ι ◦ ι = [−1], π ◦ π = [−p], ι ◦ π = [−1] ◦ π ◦ ι

Under the Deuring correspondence, there is an isomorphism between the endomorphism ring of
supersingular elliptic curves and maximal orders in the quaternion algebra Bp,∞, i.e. Q(1, i, j, k) with

i2 = −1, j2 = −p, k = ij = −ji.

For the endomorphism ring of E0, one possible identification is given by

[1] 7→ 1, ι 7→ i, π 7→ j

and then

End(E0) ∼= O0 =

〈
1, i,

i + j
2
,

1 + k
2

〉
.
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DEURING CORRESPONDENCE

Under the Deuring correspondence:
▶ the endomorphism ring End(E0) of a supersingular elliptic curve E0 is equivalent to a maximal

order O0 in the quaternion algebra Bp,∞

▶ an isogeny φ : E0 → E1 is equivalent to a (connecting kernel) ideal I, which is a left ideal of O0
and a right ideal of O1, with

Norm(I) = degφ

KLPT is an algorithmic tool which allows us to find equivalent ideals J ∼ I of different norm!
▶ The output is a lot larger than optimal, i.e. Õ(p3+ε)
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ISOGENY-BASED DIFFIE–HELLMAN?

Public information: curve E

Private isogeny φa Private isogeny φb

φa : E → EAlice φb : E → EBob

EAlice

EBob
φAlice+Bob = . . .? φBob+Alice = . . .?
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CSIDH

We can “make this commutative” by restricting to:
▶ supersingular elliptic curves defined over Fp instead of Fp2

▶ restricting to consider the endomorphism subring defined over Fp instead of Fp2 , which is
isomorphic to an order O in an imaginary quadratic field

Theorem 1
The class group cl(O) acts freely and transitively on the set of elliptic curves E with EndFp(E) ∼= O, where
π ∈ O corresponds to Fp-Frobenius.

This results in CSIDH:
▶ Alice samples [a] ∈ cl(O) and act on E to get to [a]E
▶ Bob samples [b] ∈ cl(O) and act on E to get to [b]E
▶ they both end up on [ab]E = [ba]E
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CSIDH SETTING

The good:
▶ extremely flexible due to abstraction as group action!

The bad:
▶ this is essentially the abelian hidden-shift problem so subexponential quantum attacks exist

• (there’s also some controversy about how high parameters should be for this)
▶ despite speedups and the fact that everything happens over Fp, it’s quite slow:

• you can’t randomly sample from cl(O), so we resort to ideals of the form

(3, π ± 1)e1(5, π ± 1)e2 . . . (587, π ± 1)e74

with ei ∈ [−5; 5], corresponding to an isogeny of degree (at most)

(3 · 5 · . . . · 587)5
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with ei ∈ [−5; 5], corresponding to an isogeny of degree (at most)

(3 · 5 · . . . · 587)5
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SIDH COMMUTATIVE DIAGRAM

▶ Alice and Bob choose (public) bases ⟨PA,QA⟩ = E[2a] and ⟨PB,QB⟩ = E[3b]

▶ Alice chooses φa such that kerφa = ⟨PA + saQa⟩
▶ Bob chooses φb such that kerφb = ⟨PB + sbQb⟩
▶ Alice also shares φa(PB), φa(QB) and Bob shares φb(PA), φb(QA)!

E EAlice

EBob EAlice+Bob

φb

φa

θb

θa

with
▶ ker θa = ⟨φb(PA) + saφb(QA)⟩
▶ ker θb = ⟨φa(PB) + sbφa(QB)⟩
▶ ker(θa ◦ φb) = ker(θb ◦ φa) = ⟨PA + saQA,PB + sbQb⟩
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KANI’S LEMMA

Lemma.[Ernst Kani, 1997]
Let f = (f ,H1,H2) be an isogeny diamond configuration of order N from E1 to E2 and put n = N/d
and ki = ni/d, where d = (n1,n2) and ni = #Hi. Then f factors (uniquely) over [d], i.e. f = f̄ ◦ [d], and
there is a unique reducible anti-isometry ψ = ψf : E1[N] → E2[N] such that

ψ(k1x1 + k2x2) = f̄ (x2 − x1), ∀xi ∈ H̃i = [n]−1(Hi),

and every reducible anti-isometry is of this form. Furthermore, if f′ = (f ′,H′
1,H

′
2) is another isogeny

diamond configuration, then we have ψf = ψf′ ⇐⇒ f ∼ f′.
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KANI’S LEMMA

Consider the commutative diagram

E1 E3

E2 E4

α

β

γ

δ

with degα = deg γ and deg β = deg δ

, then

Φ : E2 × E3 → E1 × E4

(P,Q) 7→
(
α̂ β̂
−δ γ

)(
P
Q

)
is a (degα+ deg β,degα+ deg β)-isogeny between principally polarised abelian surfaces with

kerΦ = {(α(P), β(P)) | P ∈ E1[degα+ deg β]} .
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KANI’S LEMMA APPLIED

Given the one-dimensional isogeny

(m · n)-isogeny

(m + n,m + n)-isogeny

this determines the two-dimensional isogeny

x
y

z

x
y

z

19 / 35



ATTACK ON SIDH/SIKE

Assume that
▶ Alice computes a 2a-isogeny
▶ Bob computes a 3b-isogeny φB : E → EB and shares φB(PA), φB(QA) as well
▶ 2a − 3b = c2 is a perfect square (for simplification purposes)

Consider the diagram

E EB

E EB

[c]

φB

[c]

φB

where 3b + c2 = 2a, giving rise to the (2a, 2a)-isogeny with (known!) kernel

kerΦ = {(cP, φB(P) | P ∈ E[2a]}
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ATTACK ON SIDH/SIKE

To complete the attack:
▶ compute the (2a, 2a)-isogeny

• this can be done by decomposing as a chain of (2, 2)-isogenies of length a
▶ extract φB from this since this isogeny is given by

(P,Q) 7→
(

[c] φ̂b
−φb [c]

)

What if 3b − 2a is not a square?
▶ in SIKE there are tricks because E0 was used so nontrivial endomorphisms can be used instead

of [c]
▶ more generally, you can consider an 8-dimensional isogeny

E4 × E4
B → E4 × E4

B

and take the easy isogenies [c1], [c2], [c3], [c4] since those exist such that

3b − 2a = c2
1 + c2

2 + c2
3 + c2

4
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DIFFERENT TYPES OF ABELIAN SURFACES

x
y

z

E1

E2

(2,2)-isogeny

. . . . . . . . .

x
y

z

x
y

z

x
y

z
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ISOGENY REPRESENTATIONS

Several ways to represent degree-d isogeny φ:
▶ as a rational map f (x), where

φ : (x, y) 7→ (f (x), y · g(x))

and d need be smooth to write as composition

▶ as kerφ, typically through generators, but computations must be feasible
• e.g. Vélu for large prime d cannot be done

▶ as kernel ideal I via Deuring correspondence but
• must be smoothened via KLPT to be useful
• requires knowledge of endomorphism ring
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NEW ISOGENY REPRESENTATION

Theorem 2
Let φ : E1 → E2 be an isogeny of (known) degree d, with interpolation data

P1, φ(P1), . . . ,Pr, φ(Pr)

such that ⟨P1, . . .Pr⟩ has (smooth) order N > 4d. Then there exists a polynomial-time algorithm for
evaluating φ.

Biggest issue is that polynomial-time is “theoretical”:
▶ sometimes we need to use isogenies in dimension 4 and 8, with the dimension being an

exponent in the complexity
▶ ideally we have parameters such that dimension is 2 and N = 2a
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SQISIGN

Consider the commitment scheme
E EA

Ecom Ech

γ

σ

φ

ρ

where
▶ σ is the secret key, γ is the commitment, φ is the challenge

Naively:
▶ respond with ρ = φ ◦ σ ◦ γ̂ but this reveals σ!

What works:
▶ smooth this ρ with KLPT to a different-degree isogeny
▶ doesn’t scale well and zero-knowledge assumption is ad hoc
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SQISIGN HIGHER DIMENSIONS

SQISignHD:
▶ take ρ : Ecom → Ech represented by interpolation data for (random) small-degree isogeny

▶ scales better and cleaner security reduction
▶ verification is slower since requires dimension 4

More tricks on the quaternion side, Clapoti:

E′ E

E EI

I2
θ

I1

▶ given an endomorphism θ : E → E and an ideal I, we can find two equivalent ideals such that

I1 ∼ I2 ∼ I, Norm(I1) + Norm(I2) = 2a,

allowing us to compute the isogeny from I without smoothening!
▶ SQISign2D-East, SQISign2D-West, SQIPrime2D with verification in dimension 2!
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CURRENT STATE

One-dimensional isogeny-based cryptography is rather well understood, apart from perhaps
▶ we can’t generate a supersingular E without knowing its endomorphism ring
▶ KLPT could be improved since the resulting isogeny degree is too large

Higher-dimensional isogenies have given us tools to make new protocols:
▶ FESTA, QFESTA
▶ SCALLOP-HD
▶ SQISignHD, SQISign2D-East, SQISign2D-West, SQIPrime2D
▶ PRISM
▶ . . .

All of these protocols use a mixture between one-dimensional and higher-dimensional. . .
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FUTURE PATHS: COMPUTATIONS?

Computational cost:
▶ efficient formulae exist for

• isogenies of degree 2 and 3 in dimension 2
• isogenies of degree 2 in dimension 4

▶ workable formulae exist for
• isogenies of degree ℓ in dimension 2

Would be nice to have:
▶ more efficient formulae for other degrees/dimensions

• given how Õ(
√
degφ) in dimension 1, can we expect Õ((degφ)g/2) in dimension g?

▶ constant time for protocols that need it
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FUTURE PATHS: PROTOCOLS AND ALGORITHMS IN HD?

General question:
▶ Is it worth it to consider cryptographic protocols strictly in dimension g > 1?

For this we will need new and efficient algorithms:
▶ faster isogenies in higher dimensions
▶ algorithmic tools similar to dimension 1:

• KLPT2 exists now!
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FUTURE PATHS: PROTOCOLS AND ALGORITHMS IN HD?

KLPT2 uses the Ibukiyama–Katsura–Oort correspondence:
▶ fix a supersingular E0 with endomorphism ring O0, then the superspecial principally polarised

abelian surfaces (up to polarised isomorphism) are 1–1 with the set

Mat(E0 × E0) :=

{(
s r
r̄ t

)
, s, t ∈ Z>0, r ∈ O0, st − rr̄ = 1

}
⊂ GL2(O0),

up to the following equivalence relation:

g1 ∼ g2 ∈ Mat(E0 × E0) ⇔ ∃u ∈ GL2(O0), u∗g1u = g2

Theorem 3 (KLPT2)

There exists a polynomial-time algorithm which upon input g1, g2 ∈ Mat(E0 × E0) and a prime number
ℓ ̸= p, under plausible heuristic assumptions, returns γ ∈ M2(O0) such that

γ∗g2γ = ℓeg1

where ℓe ∈ O(p25+ε).
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FUTURE PATHS: GRAPH THEORY?

One can turn (supersingular) elliptic curves and isogenies into graphs where
▶ vertices are elliptic curves (up to isomorphism)
▶ edges are isogenies (can be made undirected due to dual isogenies)

In dimension 1 these are well understood and have nice properties:
▶ connectedness, (ℓ+ 1)-regular, Ramanujan (rapid mixing), etc

When going to dimension g > 1 we definitely want
▶ supersingular → superspecial
▶ elliptic curves → principally polarised abelian varieties
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FUTURE PATHS: GRAPH THEORY?

In dimension g > 1 there are issues if we generalize geometrically/“naively”:
▶ lots of small cycles making it awkward to walk around “randomly” in the graph

• two isogenies with kernel (Z/(ℓZ))2 can concatenate to one with kernel

Z/(ℓ2Z)× (Z/(ℓZ))2

instead of (Z/(ℓ2Z))2

▶ rapid mixing properties are okay but not as good
▶ several distinct types of nodes creating (connected?) subgraphs

On the bright side, we do have O(p2g−1) vertices:
▶ in dimension 1 we have p/12 + ε

▶ in dimension 2 we have p3/2880 +O(p2)

▶ . . .
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FUTURE PATHS: GRAPH THEORY?

Alternative construction for graph:
▶ let L be a totally real field with strict class number one, e.g. L = Q(

√
5), and ring of integers OL,

e.g. OL = Z

[
1 +

√
5

2

]
▶ fix a supersingular E0 with endomorphism ring O0

▶ consider the superspecial principally polarised abelian varieties with real multiplication, i.e.

(Eg, ι : OL → End(Eg)),

which are the vertices of our graph, with “starting vertex”

E ⊗Z OL

and g is the degree of L
▶ the edges of our graph are given by right ideals Ii of O0 ⊗OL and we can “walk” in our graph

by computing
Ii ⊗O0⊗OL (E ⊗Z OL)
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FUTURE PATHS: GRAPH THEORY?

This alternative construction has a lot of the properties we desire:
▶ connected
▶ Ramanujan (so optimal rapid mixing)
▶ k-regular
▶ you can make it undirected and avoid loops
▶ avoid the small cycles from the geometric construction

▶ vertex set is(?) uniform
▶ the algebraic approach may make this easier to generalize KLPT

The “downside” is that we have less vertices, namely

≈ 2
( p

4π2

)g
d3/2

L .

instead of O(p2g−1).
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ISOGENIES: A BRAND NEW DAY

Despite the fall of SIDH/SIKE, things actually improved for the better!
▶ existing constructions got faster
▶ cleaner security assumptions
▶ new toolboxes for protocol constructions
▶ somewhat uncharted terrain with lots left to discover:

• more protocols and optimized versions of the current ones
• computational speedups
• algebraic and graph-theoretical results

Isogeny-based cryptography is alive and well with more activity than ever!
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